本文摘自《人工智能全球格局》,該書得到倪光南、鄔賀銓兩位院士的共同推薦,得到百度CTO王海峰博士盛贊。到底是一本怎樣的書,能同時得到兩位院士的推薦?這本書由國務院發(fā)展研究中心國際技術經濟研究所、中國電子學會、智慧芽共同撰寫,是一本通俗易懂的人工智能科普讀物,從源頭上思考人工智能的本質和發(fā)展歷程,全面解讀各國政府、科技巨頭的人工智能布局,理性思考、審慎看待我國的人工智能科技和產業(yè)實力,講述了以科技創(chuàng)新領跑世界的中國故事。
一、人工智能推動基礎科學理論突破
實際上,材料、化學、物理等基礎科學領域的研究過程中充滿了“大數(shù)據(jù)”,從設計、實驗、測試到證明等環(huán)節(jié),科學家們都離不開數(shù)據(jù)的搜集、選擇和分析。由于物理、化學或力學規(guī)律的存在,這些領域的數(shù)據(jù)往往都是結構化的、高質量的以及可標注的。人工智能技術(機器學習算法)擅長在海量數(shù)據(jù)中尋找“隱藏”的因果關系,能夠快速處理科研中的結構化數(shù)據(jù),因此得到了科研工作者的廣泛關注。人工智能在材料、化學、物理等領域的研究上展現(xiàn)出巨大優(yōu)勢,正在引領基礎科研的“后現(xiàn)代化”。
以物理領域為例,人工智能的應用給粒子物理、空間物理等研究帶來了前所未有的機遇。為尋找希格斯玻色子(上帝粒子),進一步理解物質的微觀組成,歐洲核子研究中心(CERN)主導開發(fā)了大型強子對撞機(LHC)。LHC是目前世界上最大的粒子加速器,它每秒可產生一百萬吉字節(jié)(GB)的數(shù)據(jù),一小時內積累的數(shù)據(jù)竟然與Facebook一年的數(shù)據(jù)量相當。有一些研究人員就想到,利用專用的硬件和軟件,通過機器學習技術來實時決定哪些數(shù)據(jù)需要保存,哪些數(shù)據(jù)可以丟棄。事實證明,機器學習算法可以至少做出其中70%的決定,能夠大大減少人類科學家的工作量。
盡管人工智能商業(yè)化發(fā)展更容易受關注,但人工智能在基礎科研中的應用,卻更加激動人心。因為社會生產力的變革,歸根結底在于基礎科研的進一步突破。我們或許再也回不到有著牛頓、麥克斯韋和愛因斯坦等科學“巨人”的時代。在那個時代,“巨人”們可以憑借著超越時代的智慧,在紙張上書寫出簡潔優(yōu)美的定理,或者設計出轟動世界的實驗。像這樣做出偉大工作的機會或許不多了,在這個時代,更多需要的是通過大量實驗數(shù)據(jù)來獲取真理的工作。大到宇宙起源的探索,小到蛋白質分子的折疊,都離不開一批又一批科學家們前赴后繼、執(zhí)著探索。人工智能技術的應用,或許能幫助藍色星球的科學家們擺脫無窮無盡實驗的痛苦,加速重大科學理論的發(fā)現(xiàn),將人類文明提升到新的臺階。
二、人工智能推動社會生產效率快速提升
人工智能無疑是計算機應用的最高目標和終極愿景:徹底將人類從重復機械勞動中解放出來,讓人們從事真正符合人類智能水平、充滿創(chuàng)造性的工作。在60年的人工智能發(fā)展史中,已經誕生了機器翻譯、圖像識別、語音助手和個性推薦等影響深遠的應用,人們的生活在不知不覺中已經發(fā)生了巨大變化。未來,人工智能應用場景進一步延伸,是否能夠帶來社會生產效率的極大提升,引領人類進入新時代?
為了探索這一問題,曾在谷歌和百度擔任高管的吳恩達于2017年成立了一家立足于解決 AI 轉型問題的公司 Landing.ai。吳恩達通過一篇文章和一段視頻在個人社交網站上宣布了該公司的成立,并表示希望人工智能能夠改變人類的衣食住行等方方面面的生活,讓人們從重復性勞動的精神苦役中解脫。Landing的中文含義是“落地”,這家公司的目標是幫助傳統(tǒng)企業(yè)用算法來降低成本、提升質量管理水平、消除供應鏈瓶頸等等。截至目前,Landing.ai已經選擇了兩個落地領域,分別是制造業(yè)和農業(yè)。
Landing.ai官網頁面
Landing.ai最先與制造業(yè)巨頭富士康達合作。Landing.ai嘗試利用自動視覺檢測、監(jiān)督式學習和預測等技術,幫助富士康向智能制造、人工智能和大數(shù)據(jù)邁進,提升制造過程中AI應用的層次。吳恩達認為,人工智能對制造業(yè)帶來的影響將如同當初發(fā)明電力般強大,人工智能技術很適合解決目前制造業(yè)面臨的一些挑戰(zhàn),如質量和產出不穩(wěn)定、生產線設計彈性不夠、產能管理跟不上以及生產成本不斷上漲等。目前,工業(yè)互聯(lián)網、智能制造和工業(yè)4.0等概念已經深入人心,傳統(tǒng)企業(yè)都在向智能化、數(shù)據(jù)化轉型,但生產過程中獲取的大量數(shù)據(jù)如何應用又成了新的問題。Landing.ai與富士康的合作,或許將給傳統(tǒng)制造的從業(yè)者帶來新的啟示。
當然,制造業(yè)的核心競爭力還在于制造業(yè)本身,比如車床的精度、熱處理爐的溫度控制能力等等,農業(yè)的核心競爭力也在于農業(yè)本身,比如育種技術、轉基因技術等等。人工智能技術的主要價值在于提升決策能力,進一步提升生產效率,以及降低人的重復性勞動等方面,這就是人工智能為什么可以“賦能”各個行業(yè)的原因。
三、人工智能將有效改善人類的生存空間
自第一次工業(yè)革命以來,人類活動對自然界造成的影響越來越大,日益增長的資源需求使得土地利用情況產生巨大變化,污染愈發(fā)嚴重,生物多樣性銳減,人類的生存空間變得越來越惡劣。進入人工智能時代后,怎樣更好地利用大數(shù)據(jù)和機器學習等前沿技術,為環(huán)保和綠色產業(yè)賦能,成為了政府、科學家、公眾以及企業(yè)的關注焦點。
在能源利用方面,谷歌旗下的DeepMind無疑走在了最前面。2016年開始,DeepMind將人工智能工具引入到谷歌數(shù)據(jù)中心,幫助這家科技巨頭節(jié)省能源開支。DeepMind利用神經網絡的識別模式系統(tǒng)來預測電量的變化,并采用人工智能技術操控計算機服務器和相關散熱系統(tǒng),成功幫助谷歌節(jié)省了40%的能源,將谷歌整體能效提升了15%。2018年后,DeepMind更是將“觸手”伸向了清潔能源領域。我們都知道,風力發(fā)電因為有較大的波動性和不可預測性,因而難以并入電網,無法有效利用。DeepMind利用天氣預報、氣象觀測等數(shù)據(jù)訓練神經網絡模型,可以提供36小時后的風力預測,從而讓農場的風力發(fā)電變得能夠預測。一旦風力發(fā)電可以預測,電廠就能有充裕的時間啟動需要較長時間才能上線的發(fā)電手段,與風力互補。如此一來,風電并網難的問題就可輕松解決。
DeepMind預測的風力發(fā)電量和實際發(fā)電量對比
一直以來,人們寄希望于未來的科學技術進步能夠解決當下的自然環(huán)境問題,而人工智能技術的出現(xiàn)點燃了這一希望。一旦人工智能技術可以加速基礎科學理論的突破,實現(xiàn)生產效率的大幅提升,有效改善人類的生存空間,一切發(fā)展與自然環(huán)境的問題也就迎刃而解。
四、總結
站在2019年看人工智能,不免感到幾絲寒意。人工智能算法沒有明顯突破,魯棒性差、算法黑箱等問題依然突出,部分商業(yè)化落地也不及預期,一些專家學者開始擔心人工智能將迎來新的“寒冬”。
但若站在未來回顧人工智能,當前所有的擔憂將僅僅是一個個小插曲。即便是目前,人工智能技術的潛力也遠遠未終結。人工智能即將帶來的變革,仍將會超乎大部分人的想象。近年來,許多行業(yè)都已切實感受到人工智能帶來的顛覆,包括金融、制造、教育、醫(yī)療和交通等等。但人工智能的價值維度還有很多,加速基礎科學研究、提升社會生產效率和改善人類生存空間也只是其中的幾個方面,我們不妨先提升一下自己的想象力。人工智能將為人類帶來怎樣的變革,讓我們拭目以待吧!